MATEMÁTICA 2 - Verano 2020

Práctica 2 - Espacios vectoriales

Los ejercicios marcados con (*) son opcionales (o un poco más difíciles)

- 1. Mostrar que los siguientes son espacios vectoriales, verificando que son subespacios de espacios vectoriales conocidos. Explicitar la suma y el producto por escalares en cada caso.
 - a) $K_n[X] := \{ f \in K[X] : f = 0 \text{ ó } gr(f) \le n \}$
 - $b) \ \{ A \in \mathbb{R}^{n \times n} : A^t = -A \}$
 - $c) \{ f \in \mathcal{C}^{\infty}(\mathbb{R}) : f''(1) = f(2) \}$
 - d) $\{f \in \mathcal{C}(\mathbb{R}) : \int_0^1 f(x) \, dx = 0\}$
- 2. Mostrar que $\{f \in K[X] : f = 0 \text{ ó } gr(f) \ge 2\}$ no es un subespacio de K[X].
- 3. Probar que $S \cup T$ es un subespacio de $V \iff S \subseteq T$ ó $T \subseteq S$.
- 4. Encontrar un sistema de generadores para los siguientes R-espacios vectoriales
 - a) $\{(x, y, z) \in \mathbb{R}^3 : x + y z = 0; x y = 0\}$
 - $b) \{A \in \mathbb{R}^{3 \times 3} : A = -A^t\}$
 - c) $\{A \in \mathbb{R}^{3\times 3} : \operatorname{tr}(A) = 0\}$
 - $d) \mathbb{R}_n[X]$
 - e) $\{f \in \mathbb{R}_4[X] : f(1) = 0 \text{ y } f(2) = f(3)\}$
 - $f) (*) \{ f \in C^{\infty}(\mathbb{R}) : f''' = 0 \}$
- 5. (*) Probar que $\{f \in C^{\infty}(\mathbb{R}) \mid f'' + f = 0\} = \langle \operatorname{sen} x, \cos x \rangle$.

(Sugerencia: Probar que si f''+f=0, entonces $f'(x)\cos x+f(x)\sin x$ es una función constante, cuyo valor es $f(\frac{\pi}{2})$. Deducir que $\frac{f(x)-f(\frac{\pi}{2})\sin x}{\cos x}$ es una función constante en el intervalo $(-\frac{\pi}{2},\frac{\pi}{2})$.)

- 6. Sea $S = \langle (1, -1, 2, 1), (3, 1, 0, -1), (1, 1, -1, -1) \rangle \subseteq \mathbb{R}^4$.
 - a) Determinar si $(2, 1, 3, 5) \in S$.
 - b) Determinar si $S \subseteq \{x \in \mathbb{R}^4 : x_1 x_2 x_3 = 0\}.$
 - c) Determinar si $\{x \in \mathbb{R}^4 : x_1 x_2 x_3 = 0\} \subseteq S$.
- 7. Sea V un K-espacio vectorial y sean $v, w \in V$. Decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas.
 - a) $\langle v, w \rangle = \langle v, w + 5v \rangle$.
 - b) $\langle v, w \rangle = \langle v, aw + bv \rangle, \forall a, b \in K$.
 - c) $\langle v, w \rangle = \langle v, aw + bv \rangle, \forall a \in K \{0\}, b \in K.$
 - d) $\langle v_1, v_2, w \rangle = \langle v_3, v_4, w \rangle \Rightarrow \langle v_1, v_2 \rangle = \langle v_3, v_4 \rangle$.
 - $e) \langle v_1, v_2, w \rangle = \langle v_1, v_2 \rangle \Leftrightarrow w \in \langle v_1, v_2 \rangle.$

- 8. Decidir si los siguientes conjuntos son linealmente independientes sobre K.
 - a) $\{(1-i,i), (2,-1+i)\}$ en \mathbb{C}^2 para $K=\mathbb{R}$ y para $K=\mathbb{C}$.
 - b) $\{(1-X)^3, (1-X)^2, 1-X, 1\}$ en K[X]
 - c) $\{ \operatorname{sen} x, \operatorname{cos} x, x \operatorname{cos} x \}$ en $\mathbb{R}^{\mathbb{R}}$ para $K = \mathbb{R}$
 - d) $\{e^x, x, e^{-x}\}$ en $\mathbb{R}^{\mathbb{R}}$ para $K = \mathbb{R}$
 - e) $u = (1, 0, 1, 0, 1, \ldots), v = (0, 1, 0, 1, 0, \ldots), w = (1, 1, 0, 1, 1, 0, \ldots)$ en $K^{\mathbb{N}}$
- 9. Hallar todos los $k \in \mathbb{R}$ para los cuales cada uno de los siguientes subconjuntos es linealmente independiente.
 - a) $\{(1,2,k), (1,1,1), (0,1,1-k)\}\subset \mathbb{R}^3$
 - b) $\{(k,1,0), (3,-1,2), (k,2,-2)\}\subset \mathbb{R}^3$
 - $c) \ \left\langle \left(\begin{array}{cc} 1 & k \\ -1 & 2 \end{array}\right), \ \left(\begin{array}{cc} k & 1 \\ 0 & 2k \end{array}\right), \ \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \right\rangle \subset \mathbb{R}^{2 \times 2}$
- 10. Hallar una base y la dimensión de los siguientes \mathbb{R} -espacios vectoriales.
 - a) $\langle (1,4,-2,1), (1,-3,-1,2), (3,-8,-2,7) \rangle$
 - b) $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$
 - c) $\{f \in \mathbb{R}_3[X] : f(2) = f(-1)\}$
 - d) $\{f \in \mathbb{R}_3[X] : f(2) = f'(2) = 0\}$
 - e) $\{A \in \mathbb{R}^{n \times n} : \operatorname{tr}(A) = 0\}$
 - f) $\{(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}: a_i=a_j, \forall i,j\}$
- 11. Completar los siguientes conjuntos linealmente independientes a una base del K-espacio vectorial V indicado.
 - a) $\{(1,1,1,1), (0,2,1,1)\}$, $V = \mathbb{R}^4, K = \mathbb{R}$
 - b) $\{X^3 2X + 1, X^3 + 3X\}, V = \mathbb{R}_3[X], K = \mathbb{R}$
 - c) $\left\{ \begin{pmatrix} 1 & 1 \\ i & 1 \end{pmatrix}, \begin{pmatrix} 0 & i \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \right\}, V = \mathbb{C}^{2 \times 2}, K = \mathbb{C}$
- 12. Extraer una base de los siguientes K-espacios vectoriales, de cada uno de los sistemas de generadores dados.
 - a) $\langle (1,1,2), (1,3,5), (1,1,4), (5,1,1) \rangle \subset \mathbb{R}^3, K = \mathbb{R}$
 - $b) \ \langle X^2+2X+1,\, X^2+3X+1,\, X+2\rangle \subset \mathbb{R}[X], K=\mathbb{R}$
 - $c)\ \left\langle \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},\ \begin{pmatrix} 0 & i \\ 1 & 1 \end{pmatrix},\ \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix},\ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \right\rangle \subset \mathbb{C}^{2\times 2}, K = \mathbb{C}$
- 13. Hallar la dimensión de los siguientes \mathbb{R} -espacios vectoriales, para cada $k \in \mathbb{R}$
 - a) $\langle (1, k, 1), (-1, k, 1), (0, 1, k) \rangle$
 - b) $\left\langle \begin{pmatrix} 1 & k \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} k & 1 \\ 0 & 2k \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\rangle$

c)
$$\{x \in \mathbb{R}^3 : Ax = 0\}$$
 siendo $A = \begin{pmatrix} 1 & -k & -1 \\ -1 & 1 & k^2 \\ 1 & k & k-2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$

14. Determinar todos los $k \in \mathbb{R}$ para los cuales

$$\langle (-2,1,6), (3,0,-8) \rangle = \langle (1,k,2k), (-1,-1,k^2-2), (1,1,k) \rangle$$

- 15. En cada uno de los siguientes casos caracterizar los subespacios $S \cap T$ y S + T de V. Determinar si la suma es directa.
 - a) $V = \mathbb{R}^3$, $S = \{(x, y, z) : 3x 2y + z = 0\}$ y $T = \{(x, y, z) : x + z = 0\}$
 - b) $V = \mathbb{R}^3$, $S = \{(x, y, z) : 3x 2y + z = 0, x y = 0\}$ y $T = \langle (1, 1, 0), (5, 7, 3) \rangle$
 - c) $V = \mathbb{R}^3$, $S = \langle (1,1,3), (1,3,5), (6,12,24) \rangle$ y $T = \langle (1,1,0), (3,2,1) \rangle$
 - d) $V = \mathbb{R}[X], S = \{ f \in \mathbb{R}[X] : f(1) = 0 \}$ y $T = \langle 1, X, X^2, X^3 + 2X^2 X, X^5 \rangle$
 - e) $V = \mathbb{R}[X], S = \{f \in \mathbb{R}[X] : f(0) = 0\}$ y $T = \{f \in \mathbb{R}[X] : f'(0) = f''(0) = 0\}$
- 16. Sean $S = \{x \in \mathbb{R}^3 : x_1 + x_2 x_3 = 0\}$ y $T = \langle (1, k, 2), (-1, 2, k) \rangle \subset \mathbb{R}^3$. Determinar todos los $k \in \mathbb{R}$ para los cuales $S \cap T = \langle (0, 1, 1) \rangle$.
- 17. En cada caso siguiente, probar que S y T son subespacios de V que satisfacen $S \oplus T = V$.
 - a) $V = \mathbb{R}^{\mathbb{R}}$, $S = \{ f \in \mathbb{R}^{\mathbb{R}} : f(0) = 0 \}$ y $T = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ es constante} \}$
- 18. Para cada subespacio $S \subseteq V$ dado, hallar un subespacio $T \subseteq V$ tal que $S \oplus T = V$.
 - a) $S = \langle (1, 2, -1, 3), (2, 3, -2, 1), (0, 1, 0, 7) \rangle, V = \mathbb{R}^4$
 - b) $S = \{A \in \mathbb{R}^{3 \times 3} : \operatorname{tr}(A) = 0\}, \ V = \mathbb{R}^{3 \times 3}$
 - c) $S = \langle 3, 1 + X^2 \rangle, \ V = \mathbb{R}_4[X]$
- 19. Mostrar que si S, T son subespacios de \mathbb{R}^3 tales que dim $S = \dim T = 2$, entonces existe $v \neq 0$ tal que $v \in S \cap T$.
- 20. (*) Sea V un K-espacio vectorial de dimensión n y sea T un hiperplano de V (i.e. un subespacio de dimensión n-1).
 - a) Probar que $\forall v \notin T, T \oplus \langle v \rangle = V$.
 - b) Si S es un subespacio de V tal que $S \not\subseteq T$, probar que S + T = V. Calcular $\dim(S \cap T)$.
 - c) Si S y T son dos hiperplanos distintos, deducir $\dim(S \cap T)$.
- 21. Encontrar las coordenadas de $v \in V$ respecto de la base \mathcal{B} en los siguientes casos:
 - a) $V = \mathbb{R}^3$; $\mathcal{B} = \{(1, 2, -1), (0, 1, 1), (0, 0, 2)\}, v = (1, 2, -1) \text{ y } v = (x_1, x_2, x_3)$
 - b) $V = \mathbb{R}_3[X]$; $\mathcal{B} = \{3, X+1, X^2+5, X^3+X^2\}$, $v = 2X^2-X^3$
 - c) $V = \mathbb{R}^{2 \times 2}$; $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix} \right\}, \quad v = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$